AI Fundementals

AI Fundementals

  • 1 Enrolled
  • beginner levels
  • Last updated 30 Apr 2025
  • English

Course Outcomes

1. Understand AI Concepts and History

  • Define AI and differentiate between narrow AI, general AI, and superintelligent AI.
  • Trace the historical evolution of AI and key milestones.
  • Explain the Turing Test and other benchmarks for AI intelligence.

2. Explore Core AI Techniques

  • Describe machine learning (ML) vs. rule-based systems.
  • Compare supervised, unsupervised, and reinforcement learning.
  • Understand search algorithms (e.g., A*, minimax) in problem-solving.

3. Learn Machine Learning Fundamentals


4. Introduction to Neural Networks & Deep Learning


5. AI in Real-World Applications

  • Analyze AI use cases in industries (healthcare, finance, autonomous vehicles).
  • Discuss AI-powered tools (ChatGPT, recommendation systems, facial recognition).
  • Explore AI ethics, bias, and fairness in algorithmic decision-making.

6. Natural Language Processing (NLP) Basics


7. AI Ethics and Societal Impact

  • Debate job displacement, privacy concerns, and AI regulation (e.g., GDPR, AI Act).
  • Identify bias in datasets and mitigation strategies.


Course Description

1. Understand AI Concepts and History

  • Define AI and differentiate between narrow AI, general AI, and superintelligent AI.
  • Trace the historical evolution of AI and key milestones.
  • Explain the Turing Test and other benchmarks for AI intelligence.

2. Explore Core AI Techniques

  • Describe machine learning (ML) vs. rule-based systems.
  • Compare supervised, unsupervised, and reinforcement learning.
  • Understand search algorithms (e.g., A*, minimax) in problem-solving.

3. Learn Machine Learning Fundamentals


4. Introduction to Neural Networks & Deep Learning


5. AI in Real-World Applications

  • Analyze AI use cases in industries (healthcare, finance, autonomous vehicles).
  • Discuss AI-powered tools (ChatGPT, recommendation systems, facial recognition).
  • Explore AI ethics, bias, and fairness in algorithmic decision-making.

6. Natural Language Processing (NLP) Basics


7. AI Ethics and Societal Impact

  • Debate job displacement, privacy concerns, and AI regulation (e.g., GDPR, AI Act).
  • Identify bias in datasets and mitigation strategies.






Why Take This Course?

  • Gain a strong foundation in AI before diving into advanced topics.
  • Learn practical skills with industry-relevant tools.
  • Understand AI’s societal impact and ethical considerations.


Topics Covered

Course Lessons
Artificial intelligence course

AI and machine learning high level overview


Frequently Asked Questions

course image

This course includes
  • Lectures 1
  • Duration 0m
  • Skills beginner
  • Language English
  • Certificate Yes